Umpolung of Carbon-Sulfur Bonds. Novel Synthesis of **Substituted Allenes from Propargylic Dithioacetals**

Hsian-Rong Tseng, Chin-Fa Lee, Lian-Ming Yang, and Tien-Yau Luh*

Department of Chemistry, National Taiwan University, Taipei, Taiwan 106

Received June 28, 1999

Umpolung of the carbon-sulfur bonds can be achieved by treatment of propargylic dithioacetals 1 with organocuprates. The organocopper intermediates 3 gave the corresponding allenyl thioethers 4 upon protonolysis. When alkyl halides were used, propargylic thioethers 5 were obtained exclusively. Transmetalation of organocopper intermediates 3 with ZnBr₂ followed by Pd(PPh₃)₄catalyzed coupling with vinylic or aryl halides afforded the corresponding allenyl thioethers 4. Either **4** or **5** reacted with Grignard reagents in the presence of NiCl₂(dppf) to yield the corresponding allenes 9 or 10, respectively. The overall reaction can be considered to use 1 as allene-1,3-zwitterion synthons. The relative reactivities of a propargylic ether versus a propargylic dithioacetal toward an organocopper reagent were compared. The sulfur moiety apparently has higher reactivity toward the copper reagent.

Carbon and sulfur have similar electronegativities; therefore, the carbon-sulfur bond is ambiphilic. Accordingly, the carbon end of a thioether linkage can serve either as an electrophilic center or as a carbanionic leaving group (Scheme 1). Numerous reactions are known to employ the sulfide leaving group in organic synthesis. For example, the conversion of a carbon-sulfur bond to a carbon-carbon bond can be achieved by the nickelcatalyzed cross coupling reactions of organosulfur compounds with Grignard reagents.¹⁻³ Umpolung of a carbonsulfur bond to generate a carbanionic leaving group from the corresponding thioether is rare.⁴ In general, a stabilized anionic species is essential for such heterolytic cleavage reaction. Desulfurization of an α-thioalkoxycarbonyl compound can be achieved upon treatment with a thioalkoxide anion.^{4a} Benzylic dithioacetals react chemoselectively with organolithium reagents leading to the formation of the corresponding sulfur-stabilized carbanions (eq 1).4b

$$\begin{array}{c} \text{SR}^{1} & \text{SR}^{1} & \text{SR}^{1} \\ \text{Ph-}\overset{}{-} \text{C}-\text{SR}^{1} & \overset{}{-} \text{RLi} & \text{Ph-}\overset{}{-} \text{C}-\text{Li} & \overset{}{-} \overset{}{-} \text{Ph-}\overset{}{-} \text{C}-\text{E} & (1) \\ \text{Me} & \text{Me} & \text{Me} \end{array}$$

We recently disclosed that propargylic dithioacetal 1 can serve as an allene-1,3-dication synthon 2. Thus, treatment of 1 with the Grignard reagent in the presence of a nickel catalyst (eq 2) results in replacing the two carbon-sulfur bonds by two carbon-carbon bonds.^{2,5} The

reaction would be more versatile if the two carbon-sulfur bonds in 1 could be sequentially substituted by different moieties. It is well-documented that propargylic acetals

react readily with organocopper reagents to give the corresponding allenyl ethers.⁶ The extension of this reaction to sulfur analogues, however, has not been explored.⁷ Copper is thiophilic, so the complexation of the organocopper reagent with the sulfur moiety might occur readily. As such, the transfer of an alkyl nucleophile from the organocopper reagent to the sulfur atom of the dithioacetal group might generate intermediate 3 (eq 3). Similar to that described in eq 1, this organometallic anionic species 3 is stabilized by the remaining thioether moiety and by the triple bond. As part of our continuing interest in the synthetic applications of the dithioacetal functionality, we herewith report an unprecedented organocopper-induced C-S bond cleavage reaction of propargylic dithioacetals followed by treatment with an electrophile leading to the corresponding thioethers 4 or 5.7

(2) For reviews, see: (a) Naso, F. *Pure Appl. Chem.* **1988**, *60*, 79. (b) Fiandanese, V. *Pure Appl. Chem.* **1990**, *62*, 1987. (c) Luh, T.-Y.; Ni, Z.-J. *Synthesis* **1990**, 89.

(3) For reviews, see: (a) Luh, T.-Y. Acc. Chem. Res. 1991, 24, 257. (b) Luh, T.-Y.; Leung, M.-K. In Advances in the Use of Synthons in Organic Chemistry, Dondoni, A., Ed.; JAI: London, 1995; Vol 2, p 129. (c) Luh, T.-Y. Pure Appl. Chem. 1996, 68, 105.

(4) (a) Gassman, P. G.; Gilbert, D. P.; Luh, T. Y. J. Org. Chem. **1977**, 42, 1340. (b) Krief, A.; Kenda, B.; Barbeaux, P. *Tetrahedron Lett.* **1991**, 32, 2509.

(5) Tseng, H.-R.; Luh, T.-Y. J. Org. Chem. 1996, 61, 8685.
(6) (a) Normant, J. F.; Alexakis, A. J. Organomet. Chem. 1973, 57, C99. (b) Alexakis, A.; Mangeney, P.; Normant, J. F. Tetrahedron Lett. 1985, 26, 4197. (c) Alexakis, A.; Mangeney, P.; Ghribi, A.; Marek, I.; Sedrani, R.; Normant, J. F. Pure Appl. Chem. 1988, 60, 49. (d) Alexakis, A.; Mangeney, P.; Chem. 1988, 60, 49. (d) Alexakis, A.; Mangeney, P.; Chem. 1989, 10, 427. (c) Maxakis, A.; Marek, A.; Marek, J.; Sedrani, R.; Normant, J. F. Pure Appl. Chem. 1989, 61, 427. (c) Alexakis, A.; Marek, A.; Mangeney, P. Tetrahedron Asymmetry **1990**, 1, 477. (e) Marek, I.; Mangeney, P.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. **1986**, 27, 5499. (f) Alexakis, A.; Marek, I.; Mangeney, P.; Normant, J. F. J. Am. Chem. Soc. **1990**, *112*, 8042.

(7) Preliminary communication: Tseng, H.-R.; Luh, T.-Y. J. Org. Chem. 1997, 62, 4568.

^{(1) (}a) Okamura, H.; Miura, M.; Takei, H. *Tetrahedron Lett.* **1979**, *19*, 43. (b) Wenkert, E.; Ferreira, T. W.; Michelotti, E. L. J. Chem. Soc., Chem. Commun. 1979, 637.

Results and Discussion

In the beginning of this investigation, benzylic dithioacetals **6** were employed to test the reactivity toward organocopper reagents. Thus, each of **6a** and **6b** were allowed to react with 0.6 equiv of ${}^{t}Bu_{2}CuLi$ at -78 °C followed by quenching with methanol to give **7a** and **7b** in 95 and 90% yields, respectively (eq 4).

An extension of this procedure to the reaction of **1a** under the same conditions gave the corresponding allenyl thioether **4a** (entry 1, Table 1). Deuterium incorporation at allenyl carbon (C₃) was observed when the organocopper intermediate was quenched with D_2O (entry 2). As can be seen from Table 1, a variety of electrophiles ranging from proton (entries 1-4, 7-9), organosilyl (entry 5) and tin (entry 6) reagents can be used to furnish the reaction in good to excellent yields. Substituents in the starting **1** can vary from hydrogen, alkyl, to aryl groups.

The reaction may proceed via intermediate **3a**. It is well documented that there is an equilibrium between an allenyl organometallic intermediate **3a** and a propargylic species **3b**. The corresponding **5**, however, was not obtained when these electrophiles were used.

When a soft alkyl halide electrophile was employed to react with the organocopper intermediate **3**, selective carbon–carbon bond formation leading to a propargylic thioether **5** was observed. Typical examples are outlined in Table 2. It is noteworthy that neither **4** nor **5** reacted further with the organocopper reagent under these conditions. Interestingly, the protonolysis of the organocopper intermediate arisen from the reaction of **1f** with ^tBu₂CuLi gave **5d**. The steric bulkiness of the trimeth-ylsilyl substituent presumably determines the chemose-lectivity of the reaction.

As can be seen in Table 2, the reaction proceeds successfully with carbon electrophiles having $C_{sp}3$ hybridization. The reaction would be more versatile if other carbon electrophiles could also be employed. Transmetalation of the organocopper intermediate with $ZnBr_2$ followed by the palladium-catalyzed coupling reaction gave the corresponding allenes **4** in good yield (eq 5). Typical examples are tabulated in Table 3. Attempts to synthesize the allyl-substituted allene by using allyl bromide as an electrophile yielded the rearranged triene (eq 6). Presumably, the allenyl double bond may

Table 1. Reaction of 1 with R³₂CuLi Followed by Treatment with Selected Electrophile

entry	substrate	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	E	X	product (%yield)
1	1a	Ph	Me	^t Bu	Н	MeO	4a (88)
2				^t Bu	D	DO	4b (81)
3	1b	Ph	Ph	^t Bu	Н	MeO	4c (95)
4				ⁿ Bu	Н	MeO	4d (93)
5				ⁿ Bu	TMS	Cl	4e (94)
6				ⁿ Bu	ⁿ Bu₃Sn	Cl	4f (81) ^a
7	1c	ⁿ Bu	Me	^t Bu	Н	MeO	4g (82)
8	1d	Н	Ph	ⁿ Bu	Н	MeO	4h (82)
9	1e	ⁿ Bu	ⁱ Pr	ⁿ Bu	Н	MeO	4i (73)

 $^{\it a}$ Compound 4f decomposes gradually upon standing and in CDCl3 solution.

Table 2. Reaction of 1 with $R_{2}^{3}CuLi$ Followed by Treatment with Alkyl Halide

entry	substrate	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Е	X	product (%yield)
10	1a	Ph	Me	^t Bu	Me	Ι	5a (81)
11				^t Bu	CH ₂ =CHCH ₂	Br	5b (80) ^a
12	1b	Ph	Ph	ⁿ Bu	ⁿ Bu	Br	5c (89)
13	1f	TMS	Me	^t Bu	Η	MeO	5d (94)

^a Crude yield. The product was used for the next reaction.

migrate under the reaction conditions.

As can be seen from Tables 1–3, a number of allenyl/ propargylic thioethers **4**/**5** can be easily obtained from the reactions of **1** with organocopper reagents. Sequential treatment of these thioethers with the Grignard reagent in the presence of 5 mol % of NiCl₂(dppf) resulted in a convenient synthesis of substituted allenes **9** or **10** (eqs 7 and 8). Table 4 summarizes representative examples. As expected,⁸ reduction of the C–S bond in **3c** was observed when *i*-PrMgBr was employed (entry 20). These results demonstrate the first examples of using propargylic dithioacetals as allene zwitterion synthons **12**.

Table 3. Reaction of 1 with R³₂CuLi Followed by Treatment with ZnBr₂ and Then Coupling with Electrophile under Pd Catalyst

entry	substrate	\mathbb{R}^1	R ²	\mathbb{R}^3	Е	Х	product (%yield)
14	1b	Ph	Ph	ⁿ Bu	4-MeC ₆ H ₄	Ι	4j (69)
15				ⁿ Bu	^t BuCO	Cl	4k (65) ^a
16				ⁿ Bu	PhC≡C	Br	41 (30)
17	1c	ⁿ Bu	Me	ⁿ Bu	$4 - MeC_6H_4$	Ι	4m (78) ^a

 $^a\operatorname{Crude}$ yield. The product was used directly for the next reaction.

When NiCl₂(dppe) was employed as the catalyst in the coupling reaction of **4a**, the corresponding dimeric product **11** was obtained in 52% yield (entry 25). The stereochemistry of **11** was determined by the NOE experiments. Dimerization of **9a** was also achieved in 59% yield upon treatment with MeMgI in the presence of NiCl₂(dppe).

It is known that propargylic ether can readily undergo an $S_N 2'$ reaction to give the corresponding allene.⁶ It is highly intriguing to compare the reactivities of a propargylic ether versus a propargylic dithioacetal upon treatment with an organocopper reagent. Thus, **13** was synthesized (eq 9) and allowed to react with "Bu₂CuLi followed by the usual workup to give **15** in 91% yield (eq 10). Attempts to synthesize the higher cumulenes from **16** or **17** were unsuccessful and a mixture of unidentified products was obtained.

a ⁱPrMgBr, then cyclohexanone; b MeLi, then MeI, DMSO.

Conclusions

In summary, we have demonstrated for the first time the use of propargylic dithioacetals as allene-1,3-zwitterion synthons **12**. By employing this procedure, di-, and tri- as well as tetrasubstituted allenes are synthesized conveniently.

Experimental Section

Preparation of Cuprate Reagents. Under argon atmosphere, to a slurry of CuI (114 mg, 0.60 mmol) in THF (5 mL) at -78 °C was added a pentane solution of 'BuLi (0.7 mL of 1.7 M solution, 1.2 mmol). The mixture was stirred at -78 °C for 15 min to give a THF/pentane solution of 'Bu₂CuLi which was used directly for the next reaction. A THF/hexane solution of nBu₂CuLi (5.7 mL, 0.6 mmol) was prepared similarly.

6,6-Dimethyl-1,1-diphenyl-2,5-dithiaheptane (7a). Under argon atmosphere, to a THF/pentane solution of 'Bu₂CuLi (5.7 mL, 0.6 mmol) at -78 °C was added dropwise **6a** (258 mg, 1.0 mmol) in THF (5 mL) over a period of 10 min. The mixture was stirred at -78 °C for 30 min, quenched with methanol (0.3 mL), and passed through a short-path of neutral alumina. The solvent was removed in vacuo to give the residue which was chromatographed on silica gel (1% EtOAc in hexane) to afford **6a** as a colorless oil (301 mg, 95%): ¹H NMR (300 MHz, CDCl₃) δ 1.23 (s, 9 H), 2.56–2.69 (m, 4 H), 5.22 (s, 1 H), 7.21 (t, J = 7.2 Hz, 2 H), 7.30 (t, J = 7.2 Hz, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 28.3, 30.9, 32.8, 42.5, 54.3, 127.2, 128.3, 128.5, 141.1; HRMS calcd for C₁₉H₂₄S₂: 316.1319, found: 316.1322.

6,6-Dimethyl-1-phenyl-2,5-dithiaheptane (7b). In a manner similar to that described for the reaction of **6a**, **6b** (182 mg, 1.00 mmol) was allowed to react with ¹Bu₂CuLi (5 mL, 0.6 mmol in THF/pentane) at -78 °C for 30 min to yield a colorless oil **7b** (163 mg, 90%): ¹H NMR (300 MHz, CDCl₃) δ 1.26 (s, 9 H), 2.55–2.68 (m, 4 H), 3.73 (s, 2 H), 7.20–7.32 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ 28.4, 31.0, 31.7, 36.4, 42.5, 127.0, 128.5, 128.8, 138.2; HRMS calcd for C₁₃H₂₀S₂: 240.1006, found: 240.1017.

3,8,8-Trimethyl-1-phenyl-4,7-dithia-1,2-nonadiene (4a). In a manner similar to that described for the reaction of **6a**, ¹Bu₂CuLi (5.7 mL, 0.6 mmol in THF/pentane) was allowed to react with **1a** (220 mg, 1.0 mmol) in THF (5 mL) to give **4a** as a colorless oil (243 mg, 88%): bp 90 °C (0.05 mmHg); ¹H NMR (300 MHz, CDCl₃) δ 1.18 (s, 9 H), 2.04 (d, J = 3.0 Hz, 3 H), 2.67–2.79 (m, 4 H), 6.36 (q, J = 3.0 Hz, 1 H), 7.15–7.30 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.6, 28.4, 30.9, 32.8, 42.6, 99.7, 101.9, 127.0, 127.3, 128.6, 134.6, 198.4; IR (NaCl, neat) 1919 cm⁻¹; HRMS calcd for C₁₆H₂₂S₂: 278.1162, found: 278.1172.

A similar reaction of **1a** (220 mg, 1.00 mmol) with ^tBu₂CuLi (5.0 mL, 0.6 mmol in THF/pentane) followed by quenching with D₂O (0.3 mL) to give **4b** as a colorless oil (226 mg, 81%): ¹H NMR (300 MHz, CDCl₃) δ 1.18 (s, 9 H), 2.03 (s, 3 H), 2.67–2.79 (m, 4 H), 7.15–7.26 (m, 3 H), 7.28 (d, J = 4.2 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.6, 28.4, 30.9, 32.8, 42.5, 99.5 (t, J = 24.3 Hz), 102.1, 127.0, 127.3, 128.6, 134.6, 198.3; HRMS calcd for C₁₆H₂₁DS₂: 279.1225, found: 279.1227.

8,8-Dimethyl-1,3-diphenyl-4,7-dithia-1,2-nonadiene (4c). In a manner similar to that described for the reaction of **6a**, ¹Bu₂CuLi (5.7 mL, 0.6 mmol in THF/pentane) at -78 °C was allowed to react with **1b** (282 mg, 1.00 mmol) in THF (5 mL) to give **4c** as a colorless oil (323 mg, 95%): ¹H NMR (200 MHz, CDCl₃) δ 1.19 (s, 9 H), 2.70–2.95 (m, 4 H), 6.73 (s, 1 H), 7.21–7.39 (m, 8 H), 7.54–7.60 (m, 2 H); ¹³C NMR (50 MHz, CDCl₃) δ 28.4, 30.9, 33.0, 42.6, 101.5, 108.2, 126.6, 127.3, 127.8, 128.1, 128.5, 128.9, 133.6, 134.2, 202.8; IR (NaCl, neat) 1948 cm⁻¹; HRMS calcd for C₁₆H₂₂S₂: 340.1319, found: 340.1320.

1,3-Diphenyl-4,7-dithia-1,2-undecadiene (4d). In a manner similar to that described for the reaction of **6a**, the reaction of **1b** (220 mg, 1.00 mmol) with "Bu₂CuLi (5.7 mL, 0.6 mmol in THF/hexane) gave **4d** as a colorless oil (316 mg, 93%): ¹H NMR (300 MHz, CDCl₃) δ 0.82 (t, J = 7.2 Hz, 3 H), 1.27 (sextet, J = 7.2 Hz, 2 H), 1.42 (quin, J = 7.2 Hz, 2 H), 2.27–2.43 (m, 2 H), 2.63–2.80 (m, 2 H), 2.91 (t, J = 7.2 Hz, 2 H), 6.73 (s, 1 H), 7.22–7.36 (m, 8 H), 7.54–7.57 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 13.6, 21.0, 25.6, 31.7, 31.9, 32.8, 101.8, 108.3, 126.6, 127.2, 127.9, 128.2, 128.5, 128.9, 133.6, 134.2, 202.5; IR (NaCl, neat) 1949 cm⁻¹; HRMS calcd for C₁₆H₂₂S₂: 340.1319, found: 340.1319.

1-(Trimethylsilyl)-1,3-diphenyl-4,7-dithia-1,2-undecadiene (4e). In a manner similar to that described for the reaction of **6a**, the reaction of **1b** (282 mg, 1.0 mmol) with "Bu₂CuLi (5.7 mL, 0.6 mmol in THF/hexane) at -78 °C. The mixture was stirred at -78 °C for 1.5 h, chlorotrimethylsilane (0.2 mL, 1.5 mmol) was introduced, and the mixture was

^{(8) (}a) Wenkert, E.; Hanna, J. M., Jr.; Leftin, M. H.; Michelotti, E. L.; Potts, K. T.; Usifer, D. J. Org. Chem. 1985, 50, 1125. (b) Wenkert, E.; Ferreira, T. W. J. Chem. Soc., Chem. Commun. 1982, 840. (c) Trost, B. M.; Lavoie A. C. J. Am. Chem. Soc. 1983, 105, 5075. (d) Trost, B. M.; Ornstein, P. L. J. Org. Chem. 1982 47, 748. (e) Shen, G.-Y.; Tapia, R.; Okamura, W. H. J. Am. Chem. Soc. 1987, 109, 7499. (f) Fabre, J.-L.; Julia, M. Tetrahedron Lett. 1983, 24, 4311. (g) Cuvigny, T.; Fabre, J.-L.; Hervé du Penhoat, C.; Julia, M. Tetrahedron Lett. 1983, 24, 4319. (h) Fabre, J.-L.; Julia, M.; Verpeaux, J.-L. Bull. Soc. Chim. Fr. 1985, 772. (i) Capet, M, Cuvigny, T.; Hervé du Penhoat, C.; Julia, M.; Loomis, G. Tetrahedron Lett. 1987, 28, 6273.

Table 4. NiCl₂(L)-Catalyzed Cross-Coupling Reactions of 4 or 5 with Grignard Reagents

entry	substrate	\mathbb{R}^1	\mathbb{R}^2	Е	\mathbb{R}^4	L	product (%yield)
18	4a	Ph	Me	Н	Me	dppf	9a (81)
19	4g	ⁿ Bu	Me	Н	Ph	dppf	9b (67)
20	4c	Ph	Ph	Н	ⁱ Pr	dppe	9c (50)
21	4m	ⁿ Bu	Me	$4 - MeC_6H_4$	Ph	dppe	9d (55)
22	5a	Ph	Me	Me	TMSCH ₂	dppe	10a (72)
23	5b	Ph	Me	$H_2C = CGCH_2$	ⁿ Bu	dppe	10b (62)
24	5c	Ph	Ph	Bu	Ph	dppe	10c (67)
25	4a	Ph	Me	Н	Me	dppe	11 (52)

gradually warmed to room temperature and stirred for 1 h. The mixture was taken up in pentane (20 mL) and passed through a short basic alumina column. The solution was evaporated in vacuo, and the residue was chromatographed on basic alumina (1% EtOAc in hexane pretreated with K_2CO_3) to give **4e** (328 mg, 94%): ¹H NMR (200 MHz, acetone- d_6) δ 0.32 (s, 9 H), 0.83 (t, J = 7.1 Hz, 3 H), 1.20–1.50 (m, 4 H), 2.34–2.45 (m, 2 H), 2.63–2.80 (m, 2 H), 2.85–2.92 (m, 2 H), 7.20–7.42 (m, 8 H), 7.55–7.65 (m, 2 H); ¹³C NMR (300 MHz, CDCl₃) δ –0.2, 13.6, 21.9, 31.7, 31.8, 32.0, 33.2, 99.4, 106.0, 126.1, 126.9, 127.1, 127.9, 128.5, 128.7, 134.7, 136.1, 207.3; IR (NaCl, neat) 1901 cm⁻¹; HRMS calcd for C₂₄H₃₂S₂Si: 412.1715, found: 412.1725.

1-(Tributylstannyl)-1,3-diphenyl-4,7-dithia-1,2-undecadiene (4f). In a manner similar to that described for the reaction of 4e, the reaction of 1b (282 mg, 1.0 mmol) with ⁿBu₂CuLi (5.7 mL, 0.6 mmol in THF/hexane) at -78 °C. Bu₃SnCl (0.4 mL, 1.5 mmol) was introduced, and the mixture was gradually warmed to room temperature and stirred for an additional 6 h. Pentane (20 mL) was added, and the mixture was passed through basic alumina. The solution was evaporated in vacuo, and the residue was chromatographed on basic alumina (hexane pretreated with K_2CO_3) to give 4f (510 mg, 81%): ¹H NMR (200 MHz, CDCl₃) δ 0.73-1.10 (m, 12 H), 1.15-1.70 (m, 22 H), 2.30-2.40 (m, 2 H), 2.60-3.00 (m, 4 H), 7.10-7.50 (m, 8 H), 7.55-7.65 (m, 2 H); IR (NaCl, neat) 1897 cm $^{-1};\ HRMS$ (FAB) calcd for $C_{33}H_{50}S_{2}120Sn;\ 630.2376,$ found: 630.2383. Compound 4f decomposes gradually upon standing and in CDCl₃ solution. No satisfactory ¹³C NMR was obtained. Neverthelss, it did show absorption at δ 202.9 attrbuted to the C_{sp} allenyl carbon. No signals due to alkyne carbons (δ 80–95) were observed.

2,2,7-Trimethyl-3,6-dithiatrideca-7,8-diene (4g). In a manner similar to that described for the reaction of **6a**, the reaction of **1c** (200 mg, 1.00 mmol) with ¹Bu₂CuLi (5.7 mL, 0.6 mmol in THF/pentane) gave **4g** as a colorless oil (211 mg, 82%): bp 75 °C (0.05 mmHg) ¹H NMR (200 MHz, CDCl₃) δ 0.84 (t, J = 7.2 Hz, 3 H), 1.22–1.39 (m, 13 H, embodied a singlet at 1.28 due to the ¹Bu group), 1.84 (d, J = 2.8 Hz, 3 H), 1.92–1.99 (m, 2 H), 2.66–2.70 (m, 4 H), 5.31 (tq, J = 7.2, 2.8 Hz); ¹³C NMR (50 MHz, CDCl₃) δ 13.9, 20.1, 22.2, 28.2, 29.2, 31.0, 31.2, 32.7, 42.5, 96.8, 97.0, 197.5; IR (NaCl, neat) 1932 cm⁻¹; HRMS calcd for C₁₄H₂₆S₂: 258.1476, found: 258.1490.

3-Phenyl-4,7-dithiaundeca-1,2-diene (4h). In a manner similar to that described for the reaction of **4a**, ⁿBu₂CuLi (5.7 mL, 0.6 mmol in THF/hexane) at -78 °C was allowed to react with **1d** (206 mg, 1.00 mmol) in THF (5 mL) to give **4h** as a colorless oil (216 mg, 82%): bp 65 °C (0.05 mmHg); ¹H NMR (300 MHz, CDCl₃) ∂ 0.89 (t, J = 7.3 Hz, 3 H), 1.36 (tq, J = 7.3, 7.5 Hz, 2 H), 1.52 (tt, J = 7.3, 7.5 Hz, 2 H), 2.49 (t, J = 7.3 Hz, 2 H), 2.72–2.76 (m, 2 H), 2.86–2.89 (m, 2 H), 5.27 (s, 2 H), 7.23 (t, J = 7.2 Hz, 1 H), 7.29–7.37 (m, 2 H), 7.53 (m, 2 H), ¹³C NMR (75 MHz, CDCl₃) ∂ 13.6, 21.9, 31.5, 31.8, 31.9, 32.9, 81.0, 103.0, 126.7, 127.7, 128.5, 134.2, 206.3; IR (neat, cm⁻¹) 1935 (allene); HRMS calcd for C₁₅H₂₀S₂: 264.1007, found: 264.1006.

7-(2-Propyl)-8,11-dithia-5,6-pentadecadiene (4i). In a manner similar to that described for the reaction of **6a**, the reaction of **1e** (228 mg, 1.0 mmol) with ⁿBu₂CuLi (5.7 mL, 0.6 mmol in THF/hexane) followed by quenching with methanol gave **4i** as a colorless oil (210 mg, 73%): ¹H NMR (300 MHz, CDCl₃) δ 0.88 (t, J = 7.3 Hz, 3 H), 0.90 (t, J = 7.3 Hz, 3 H),

1.07 (d, J = 6.7 Hz, 3 H), 1.08 (d, 6.7 Hz, 3 H), 1.28–1.44 (m, 6 H), 1.49–1.60 (m, 2 H), 1.96–2.05 (m, 2 H), 2.16–2.27 (m, 1 H), 2.51 (t, J = 7.6 Hz, 2 H), 2.61–2.80 (m, 4 H), 5.43 (dt, J = 2.1 Hz, J = 6.6 Hz, 1 H); ¹³C NMR (50 MHz, CDCl₃) δ 13.6, 13.9, 21.9, 22.0, 22.2, 22.3, 29.4, 31.4, 31.7, 31.9, 32.4, 32.8, 98.8, 109.2, 195.7; IR (NaCl, neat) 1951 cm⁻¹; HRMS calcd for C₁₆H₃₀S₂ 286.1789, found 286.1797.

3,3,8,8-Tetramethyl-1-phenyl-4,7-dithia-1-nonyne (5a). To a THF/pentane solution of 'Bu₂CuLi (11.4 mL, 1.2 mmol in THF/pentane) at -78 °C was added dropwise **1a** (440 mg, 2.00 mmol) in THF (10 mL) over a period of 15 min. The mixture was stirred at -78 °C for 5 min. HMPA (0.33 mL, 2.0 mmol) and MeI (0.19 mL, 3.0 mmol) were then added, and the mixture was stirred at -78 °C for 30 min and then passed through a short neutral alumina. The solvent was removed in vacuo to give the residue which was distilled to give **5a** as a colorless oil (472 mg, 81%): bp 120 °C (0.05 mmHg), ¹H NMR (300 MHz, CDCl₃) δ 1.27 (s, 9 H), 1.63 (s, 6 H), 2.78–3.03 (m, 4 H), 7.24–7.27 (m, 3 H), 7.34–7.41 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.6, 28.6, 30.9, 31.2, 39.2, 42.5, 82.4, 93.3, 126.5, 127.9, 128.1, 131.6; IR (NaCl, neat) 2201 cm⁻¹; HRMS calcd for C₁₆H₂₂S₂: 292.1319, found: 292.1312.

3-Butyl-1,3-diphenyl-4,7-dithia-1-undecyne (5c). Under argon atmosphere, a THF solution (5 mL) of nBu_2CuLi (prepared from 1.2 mmol of nBuLi and CuI (114 mg 0.6 mmol)) was added dropwise to a solution of 1b (282 mg, 1.0 mmol) in THF (5 mL) at -78 °C and the mixture was stirred at -78 °C for 0.5 h. HMPA (0.26 mL, 1.5 mmol) was introduced, and the mixture was stirred for an additional 1 h. After 1-bromobutane (0.16 mL, 1.5 mmol) was added, the mixture was allowed to warm to room temperature and stirred overnight, taken up in pentane (20 mL), and passed through basic alumina. The solution was evaporated in vacuo, and the residue was chromatographed on basic alumina (hexane pretreated with K₂CO₃) to give 5c (353 mg, 89%): ¹H NMR (200 MHz, CDCl₃) δ 0.82 (t, J = 7.2 Hz, 3 H), 0.84 (t, J = 7.0 Hz, 3 H), 1.10–1.65 (m, 8 H), 2.0-2.2 (m, 2 H), 2.35 (t, J = 7.3, 2 H), 2.4-2.85 (m, 2 H) 7.2-7.45 (m, 6 H) 7.42-7.6 (m, 2 H) 7.65-7.8 (m, 2 H).; $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) δ 13.60, 13.88, 14.11, 21.91, 22.61, 27.76, 31.24, 31.62, 31.71, 43.30, 51.89, 87.17, 90.44, 123.04, 127.18, 127.28, 128.19, 128.28, 128.34, 131.67, 142.02.; HRMS calcd for C₂₅H₃₂S₂: 396.1945, found: 396.1942.

3,8,8-Trimethyl-1-(trimethylsilyl)-4,7-dithia-1-nonyne (5d). In a manner similar to that described for the reaction of **6a**, **1f** (216 mg, 1.00 mmol) was treated with 'Bu₂CuLi (5 mL, 0.6 mmol in THF/pentane) to give **5d** as a colorless oil (257 mg, 94%): bp 85 °C (0.05 mmHg); ¹H NMR (300 MHz, CDCl₃) δ 0.13 (s, 9 H), 1.30 (s, 9 H), 1.44 (d, J =4.2 Hz, 3 H), 2.71–2.97 (m, 4 H), 3.67 (q, J = 4.2 Hz); ¹³C NMR (50 MHz, CDCl₃) δ 0.0, 21.6, 28.6, 29.8, 31.1, 31.9, 42.6, 87.6, 106.1; IR (NaCl, neat) 2165 cm⁻¹; HRMS calcd for C₁₃H₂₆-SiS₂: 274.1245, found: 274.1264.

1,3-Diphenyl-1-(4-methylphenyl)-4,7-dithiaundeca-1,2diene (4j). Under argon atmosphere, to a THF/hexane solution of "Bu₂CuLi (5.7 mL, 0.6 mmol) at -78 °C was added dropwise **1b** (282 mg, 1.00 mmol) in THF (5 mL) over a period of 15 min. The mixture was stirred at -78 °C for 5 min. THF solution of ZnCl₂ (1.0 mL, 1.0 mmol in THF) was then added, the mixture was stirred at -78 °C for 30 min, and then a THF solution of 4-iodotoluene (244 mg, 1.2 mmol) and Pd(PPh₃)₄ (57.5 mg, 0.05 mmol) was added at -78 °C. The mixture was stirred at room temperature and then passed through a shortpath neutral alumina. The solvent was removed in vacuo to give a pale yellow oil, which was chromatographed on basic alumina (EtOAc/hexane = 1/50) to give **4j** as a colorless oil (296 mg, 69%): ¹H NMR (300 MHz, CDCl₃) δ 0.89 (t, J = 7.2 Hz, 3 H), 1.22–1.51 (m, 4 H), 2.32 (t, J = 7.2 Hz, 3 H), 2.41 (s, 3 H), 2.60–2.68 (m, 2 H), 2.96–3.04 (m, 2 H), 7.22 (d, J = 7.8 Hz, 2 H), 7.30–7.51 (m, 10 H), 7.68 (dt, J = 6.6, 1.4 Hz); ¹³C NMR (50 MHz, CDCl₃) δ 13.5, 21.1, 21.8, 31.6, 31.8, 32.0, 32.7, 107.0, 116.4, 126.5, 127.8, 128.0, 128.2, 128.3, 128.4, 128.5, 129.2, 132.8, 134.5, 136.0, 137.7, 203.3; IR (NaCl, neat) 1908 cm⁻¹; HRMS calcd for C₂₈H₃₀S₂: 430.1789, found: 430.1794.

2,2-Dimethyl-4,6-diphenyl-3-oxo-7,10-dithiatetradeca-4,5-diene (4k). In a manner similar to that described for preparation of 4j, 1b (282 mg, 1.00 mmol) was allowed to react with ⁿBu₂CuLi (5.7 mL, 0.6 mmol in THF/hexane) and then added THF solution of ZnBr2 (1.0 mL, 1.0 mmol in THF) and stirred at -78 °C, followed the THF solution (5 mL) of pivaloyl chloride (0.15 mL, 1.2 mmol) and Pd(PPh₃)₄ (57.5 mg, 0.05 mmol). The mixture was stirred at room temperature for 12 h to give 4k as yellow oil (274 mg, 65%): $\,^1\!H$ NMR (300 MHz, acetone- d_6) δ 0.89 (t, J = 7.2 Hz, 3 H), 1.18–1.45 (m, 13H, embodied a singlet at 1.24 due to the *tert*-butyl group), 2.30-2.44 (m, 2 H), 2.58–2.72 (m, 2 H), 2.91–3.00 (m, 2 Ĥ), 7.30–7.48 (m, 8 H), 7.62–7.65 (m, 2 H); ¹³C NMR (75 MHz, acetone d_6) δ 13.9, 22.4, 27.3, 32.0, 32.3, 32.5, 33.7, 46.1, 110.0, 113.5, 127.5, 128.3, 129.0, 129.5, 129.6, 129.8, 134.3, 134.4, 202.4, 206.2; IR (NaCl, neat) 1951 cm⁻¹; HRMS calcd for C₂₆H₃₂OS₂: 424.1895, found: 424.1901.

1,3,5-Triphenyl-6,9-dithiatrideca-3,4-dien-1-yne (4l). In a manner similar to that described for the reaction of 4j, 1b (282 mg, 1.00 mmol) was allowed to react with ⁿBu₂CuLi (5.7 mL, 0.6 mmol in THF/hexane), followed by the addition of a THF solution of $ZnBr_2$ (1.0 mL, 1.0 mmol in THF) and stirred at -78 °C for 30 min. A THF solution (5 mL) of 1-bromo-2phenylacetylene (217 mg, 1.2 mmol) and Pd(PPh₃)₄ (57.5 mg, 0.05 mmol) was then added, the mixture was stirred at room temperature for 12 h to give **4l** as yellow oil (130 mg, 30%): ¹H NMR (300 MHz, acetone- d_6) δ 0.79 (t, J = 7.2 Hz, 3 H), 1.20-1.32 (m, 2 H), 1.37-1.47 (m, 2 H), 2.40-2.50 (m, 2 H), 2.76-3.06 (m, 4 H), 7.36-7.51 (m, 9 H), 7.60-7.64 (m, 4 H), 7.74–7.77 (m, 2 H); ¹³C NMR (75 MHz, acetone-*d*₆) δ 13.5, 21.9, 22.6, 31.5, 33.0, 38.7, 81.7, 95.1, 100.7, 110.3, 122.9, 126.4, 126.9, 128.1, 128.3, 128.6, 128.7, 128.8, 131.6, 132.3, 133.4, 207.5; IR (NaCl, neat) 1903, 2202 cm⁻¹; HRMS calcd for C29H28S2: 440.1632, found: 440.1644.

7-Methyl-5-(4-methylphenyl)-8,11-dithiapentadeca-5,6diene (4m). In a manner similar to that described for the reaction of **4j**, **1c** (200 mg, 1.00 mmol) was allowed to react with "Bu₂CuLi (5.7 mL, 0.6 mmol in THF/hexane) and then with ZnBr₂ (1.0 mL, 1.0 mmol in THF), 4-iodotoluene (244 mg, 1.2 mmol), and Pd(PPh₃)₄ (57.5 mg, 0.05 mmol) in THF (5 mL) to give **4m** as yellow oil (269 mg, 78%): 'H NMR (300 MHz, CDCl₃) δ 0.82 (t, J = 7.0 Hz, 3 H), 0.92 (t, J = 7.1 Hz, 3 H), 1.24–1.60 (m, 8 H), 2.01 (s, 3 H), 2.27–2.33 (m, 5H, embodied a singlet at 2.31 due to the methyl group), 2.45 (d, J = 6.8 Hz, 2 H), 2.50–2.74 (m, 4 H), 7.06–7.28 (m, 5 H). The product was used for the next reaction without further purification.

3-Methyl-1-phenyl-1,2-butadiene (9a). An ether solution of MeMgI (1.0 mL of 2.0 M solution, 2.0 mmol) was evacuated to remove the ether solvent. Under argon atmosphere, a benzene (5 mL) solution of **4a** prepared above and NiCl₂(dppf) (34 mg, 0.05 mmol) were added and the mixture was refluxed for 12 h, quenched with saturated NH₄Cl (10 mL), and extracted with ether (10 mL × 3). The organic layer was dried (MgSO₄), and the solvent was removed by distillation to give a pale yellow oil, which was chromatographed on silica gel (pentane) to give **9a** as a colorless oil (116 mg, 81%)¹: ¹H NMR (300 MHz, CDCl₃) δ 1.86 (d, J = 3 Hz, 6 H), 6.02 (septet, J = 3 Hz, 1 H), 7.16–7.34 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ 20.2, 92.5, 99.1, 126.3, 126.6, 128.4, 136.0, 203.1; IR (NaCl, neat) 1954 cm⁻¹; HRMS calcd for C₁₁H₁₂: 144.0939, found: 144.0933.

2-Phenyl-2,3-octadiene (9b). In a manner similar to that described for the reaction of **4a**, crude **4g** prepared above was treated with PhMgBr (2.0 mL of 1 M solution, 2.0 mmol) in

the presence of NiCl₂(dppf) (34 mg, 0.05 mmol) to yield **9b** (125 mg, 67%): ¹H NMR (300 MHz, CDCl₃) δ 0.92 (t, J= 6.9 Hz, 3 H), 1.33–1.52 (m, 4 H), 2.07–2.17 (m, 5 H embodied a doublet at 2.10 for Me group, J= 3.0 Hz), 5.46 (tq, J= 6.0, 3.0 Hz, 1 H), 7.20 (t, J= 7.0 Hz, 1 H), 7.29–7.35 (m, 2 H), 7.41–7.45 (m, 2 H); 13 C NMR (50 MHz, CDCl₃) δ 13.9, 17.2, 22.3, 28.7, 31.4, 93.0, 100.2, 125.6, 126.2, 128.2, 137.8, 204.1; IR (NaCl, neat) 1948 cm⁻¹; HRMS calcd for C₁₄H₁₈: 186.1408, found: 186.1414.

1,3-Diphenyl-1,2-propadiene (9c). In a manner similar to that described for the reaction of **4a**, crude **4c** prepared above was treated at room temperature with ⁱPrMgBr (2.0 mL of 1.0 M solution, 2.0 mmol) in the presence of NiCl₂(dppe) (33 mg, 0.05 mmol) to yield **9c** (96 mg, 50%): mp: 46–48 °C (lit.⁹ 49–51 °C).

2-Phenyl-4-(4-methylphenyl)-2,3-octadiene (9d). In a manner similar to that described for **5a**, crude **4m** was allowed to react with a benzene/ether (9/1, 5 mL) solution of PhMgBr (2.0 mmol) in the presence of NiCl₂(dppe) (26 mg, 0.05 mmol) under reflux for 12 h to yield **9d** as a colorless oil (152 mg, 55%): ¹H NMR (300 MHz, CDCl₃) δ 0.97 (t, J = 7.0 Hz, 3 H), 1.39–1.71 (m, 4 H), 2.26 (s, 3 H), 2.38 (s, 3 H), 2.60 (t, J = 7.2 Hz, 2 H), 7.17 (d, J = 8.0 Hz, 2 H), 7.23–7.41 (m, 5 H), 7.49–7.53 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.0, 16.9, 21.1, 22.6, 30.0, 30.1, 103.4, 107.6, 125.6, 125.9, 126.5, 128.3, 129.1, 134.0, 136.3, 137.4, 205.3; IR (NaCl, neat) 1934 cm⁻¹; HRMS calcd for C₂₁H₂₄: 276.1878, found: 276.1884.

4-Methyl-2-phenyl-1-(trimethylsilyl)-2,3-pentadiene (**10a).** In a manner similar to that described for the reaction of **4a**, crude **5a** prepared above was allowed to react with TMSCH₂MgCl (2.0 mL of 1 M solution, 2.0 mmol) to yield **10a** (164 mg, 72%): ¹H NMR (200 MHz, CDCl₃) δ 0.05 (s, 9 H), 1.80 (s, 3 H), 1.82 (s, 6 H), 7.13–7.45 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ –1.2, 19.0, 20.6, 96.7, 100.3, 125.9, 126.2, 128.0, 139.6, 202.4; IR (NaCl, neat) 1949 cm⁻¹; HRMS calcd for C₁₃H₁₈Si: 230.1491, found: 230.1488.

1-Phenyl-1-(trimethylsilyl)-1,2-butadiene (10c). In a manner similar to that described for the reaction of **4a**, crude **5c** prepared above was allowed to react with PhMgBr (2.0 mL of 1 M solution, 2.0 mmol) to yield **10c** (135 mg, 67%): ¹H NMR (200 MHz, CDCl₃) δ 0.23 (s, 9 H), 1.73 (d, J = 7.0, 3 H), 5.11 (q, J = 7.0 Hz, 1 H), 7.12–7.33 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ –0.3, 13.4, 81.5, 99.6, 126.0, 127.6, 128.3, 138.1, 209.3; IR (NaCl, neat) 1927 cm⁻¹; HRMS calcd for C₁₃H₁₈Si: 202.1179, found: 202.1177.

4-Methyl-6-phenyl-1,4,5-decatriene (10b). Under argon atmosphere, to a THF/pentane solution of ^tBu₂CuLi (11.4 mL, 1.2 mmol in THF/pentane) at -78 °C was added dropwise propargyl dithiolane 1a (440 mg, 2.00 mmol) in THF (10 mL) over a period of 15 min. The mixture was stirred at -78 °C for 5 min, allyl bromide (0.24 mL, 3 mmol) was added, and the mixture was stirred at $-78\ ^\circ C$ for 30 min. The mixture was passed through a short-path neutral alumina. The solvent was removed in vacuo to give a pale yellow oil 5b (251 mg, 80%): ¹H NMR (200 MHz, CDCl₃) δ 1.18 (s, 9 H), 2.04 (s, 3 H), 2.61–2.82 (m, 4 H), 3.25 (d, J = 6.3 Hz, 2 H), 5.06–5.18 (m, 2 H), 5.87-6.07 (m, 1 H), 7.14-7.45 (m, 5 H). Crude 5b was allowed to react with "BuMgBr (4.0 mL of 1M solution, 4.0 mmol) in the presence of NiCl₂(dppf) (68 mg, 0.10 mmol) in benzene (10 mL) at room temperature for 6 h to yield 10b (279 mg, 62%): ¹H NMR (200 MHz, CDCl₃) δ 0.96 (t, J = 7.2Hz, 3 H), 1.34-1.60 (m, 4 H), 1.82 (s, 3 H), 2.43 (t, J = 6.8 Hz, 2 H), 2.86 (d, J = 6.8 Hz, 2 H), 5.04-5.18 (m, 2 H), 5.90 (ddt, J = 7.0, 10.0, 16.8 Hz, 1 H), 7.14–7.45 (m, 5 H); ¹³C NMR (50 MHz, CDCl₃) δ 14.0, 18.5, 22.5, 29.9, 30.2, 39.2, 101.0, 104.8, 115.9, 125.9, 126.1, 128.2, 136.0, 138.2, 201.7; IR (NaCl, neat) 1951 cm⁻¹; HRMS calcd for C₁₃H₁₈Si: 226.1722, found: 226.1719.

1,4-Diphenyl-2-(2-propyl)-3-(2-propenyl)-1,3-butadiene (11). In a manner similar to that described for the reaction of **4a**, crude **4a** was allowed to react with MeMgI (1.0 mL of 2.0 M solution, 2.0 mmol) in the presence of NiCl₂(dppe) (26 mg, 0.05 mmol) under reflux for 12 h to yield **11** (75 mg, 52%): ¹H NMR (300 MHz, CDCl₃) δ 1.00 (d, J = 6.8 Hz, 3 H, 6% NOE upon irradiation at δ 6.56), 1.08 (d, J = 6.8 Hz, 3 H, 5% NOE upon irradiation at δ 6.56), 2.06 (s, 3 H, 9% NOE upon irradiation at δ 6.68), 2.32 (doublet of septet, J = 1.2, 6.8 Hz, 1 H, 3% NOE upon irradiation at δ 6.68 (s, 1H, 19% NOE upon irradiation at δ 2.06), 7.11–7.25 (m, 6 H), 7.39 (d, J = 7.2 Hz, 2 H), 7.50 (d, J = 7.2 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 21.1, 21.8, 22.1, 35.9, 116.7, 126.5, 126.6, 127.0, 128.0, 128.1, 128.7, 137.5, 137.9, 140.8, 143.5, 145.6; HRMS calcd for C₂₂H₂₄: 288.1878, found: 288.1870.

In a separate experiment treatment of **5a** (144 mg, 1.00 mmol) in benzene (5 mL) with MeMgI (0.1 mL of 1.0 M solution, 0.1 mmol) in the presence of NiCl₂(dppe) (26 mg, 0.05 mmol) under reflux for 12 h yielded **11** (85 mg, 59%).

4,6-Diphenyl-7,10-dithiatetradeca-1,3,5-triene (8). In a manner similar to that described for the preparation of 4j, 1b (282 mg, 1.00 mmol) was allowed to react with ⁿBu₂CuLi (5.7 mL, 0.6 mmol in THF/hexane). A THF solution of ZnBr₂ (1.0 mL, 1.0 mmol in THF) and stirred at -78 °C, followed by treatment with allyl bromide (0.11 mL, 1.2 mmol) and Pd-(PPh₃)₄ (57.5 mg, 0.05 mmol) in THF (5 mL). The mixture was stirred at room temperature for 12 h to give 8 as a mixture of stereoisomers (312 mg, 82%): ¹H NMR (300 MHz, CDCl₃) δ 0.86 (t, J = 7.2 Hz, 6 H), 1.29 - 1.46 (m, 8 H), 2.25 - 2.34 (m, 4 H), 2.56-2.58 (m, 4 H), 2.67-2.71 (m, 4 H), 5.00 (d, J = 9.8Hz, 1 H), 5.07 (d, J = 10.1 Hz, 1 H), 5.16 (d, J = 16.1 Hz, 1 H), 5.18 (d, J = 16.8 Hz, 1 H), 6.21–6.37 (m, 2 H, embodied a doublet at 6.27 due to the olefinic proton), 6.57-6.77 (m, 2 H, embodied a doublet at 6.75 due to the olefinic proton), 6.95-7.32 (m, 22 H); 13 C NMR (75 MHz, CDCl₃) δ 13.5, 21.8, 31.55, 31.62, 31.69, 31.72, 31.8, 31.9, 32.0, 118.5, 118.6, 125.9, 126.6, 126.8, 127.1, 127.4, 127.5, 127.6, 127.8, 128.0, 129.0, 129.5, 129.6, 131.1, 133.8, 134.2, 137.1, 137.2, 137.9, 138.0, 139.7, 140.5; HRMS calcd for C24H28S2: 380.1632, found: 380.1635.

2-Methyl-2-[2-(1-methoxycyclohexyl)ethynyl]-1,3-di-thiolane (13). Under argon atmosphere, to a THF solution (8 mL) of **14** (1.44 g, 10 mmol) at -78 °C was treated with ⁿBuLi (6.32 mL, 11.0 mmol in hexane). The mixture was stirred at -78 °C for 30 min to which cyclohexanone (1.30 mL, 10.0 mmol) was added. After stirring at room temperature for 30 min, the mixture was quenched with saturated NH₄Cl (10 mL) and extracted with ether (30 mL × 3). The organic layer was dried (MgSO₄), and the solvent was removed in vacuo to give a pale yellow oil, which was chromatographed on silica gel (EtOAc/hexane = 1/5) to give 2-methyl-2-[2-(1-hydroxycy-

clohexyl)ethynyl]-1,3-dithiolane as a white solid (2.01 g, 83%): mp 72–75 °C; ¹H NMR (200 MHz, CDCl₃) δ 1.10–1.13 (m, 1 H), 1.35–1.75 (m, 7 H), 1.80–1.90 (m, 2 H), 1.97 (s, 3 H), 2.29 (s, 1 H), 3.40–3.57 (m, 4 H); ¹³C NMR (50 MHz, CDCl₃) δ 23.3, 25.1, 31.2, 39.9, 40.5, 54.2, 68.6, 86.3, 88.3; HRMS calcd for C₁₂H₁₈OS₂: 242.0799, found: 242.0799.

Under argon atmosphere, to a THF solution (80 mL) of the alcohol prepared above (1.21 g, 5.0 mmol) at -78 °C was added MeLi (3.5 mL, 5.5 mmol in ether). The mixture was stirred for 30 min to which MeI (0.44 mL, 7.0 mmol) in DMSO (5 mL) was added at -78 °C. The mixture was stirred at room temperature for 6 h, quenched with saturated NH₄Cl (10 mL), and extracted with ether (20 mL \times 3). The organic layer was dried (MgSO₄), and the solvent was removed in vacuo to give the residue which was chromatographed on silica gel (EtOAc/hexane = 1/10) to give **13** as a white solid (1.16 g, 91%): mp: 51–53 °C; ¹H NMR (200 MHz, CDCl₃) δ 1.12–1.19 (m, 1 H), 1.36–1.68 (m, 7 H), 1.76–1.88 (m, 2 H), 1.98 (s, 3 H), 3.29 (s, 3 H), 3.37–3.53 (m, 4 H); ¹³C NMR (50 MHz, CDCl₃) δ 22.9, 25.4, 31.2, 36.7, 40.4, 50.7, 54.3, 74.0, 83.7, 90.3; IR (KBr) 2222 cm⁻¹; HRMS calcd for C₁₃H₂₀OS₂: 256.0955, found: 256.0959.

4-Methyl-1,1-pentamethylene-5,8-dithia-1,2,3-dodecatriene (15). Under argon atmosphere, to a THF/hexane solution of "Bu₂CuLi (5.7 mL, 0.6 mmol in THF/pentane) at -78 °C was added dropwise **13** (256 mg, 1.0 mmol) in THF (5 mL) over a period of 15 min. The mixture was stirred at -78°C for 15 min, quenched with methanol (0.3 mL, 11.4 mmol) and then passed through a short-path neutral alumina column. The solvent was removed in vacuo to give **15** as colorless oil (257 mg, 91%): ¹H NMR (200 MHz, benzene- d_6) δ 0.75 (t, J =7.4 Hz, 3 H), 1.15–1.65 (m, 10 H), 2.00 (s, 3 H), 2.22–2.35 (m, 6 H), 2.68–2.76 (m, 2 H), 2.92–3.00 (m, 2 H); ¹³C NMR (75 MHz, benzene- d_6) δ 13.9, 22.2, 22.8, 26.4, 28.0, 28.2, 32.1, 32.2, 33.4, 34.8, 35.3, 107.7, 115.1, 146.7, 154.5; IR (NaCl, neat) 2050 cm⁻¹; HRMS calcd for C₁₃H₂₀OS₂: 282.1476, found: 282.1479.

Acknowledgment. This work was supported by the National Science Council of the Republic of China.

Supporting Information Available: ¹H NMR spectra of **4a–l, 5a, 5c, 5d, 7a, 7b, 8, 9a, 9b, 9d, 10a–c, 11, 13,** and **15** and ¹³C NMR spectra of **4a–d, 4g–l, 5a, 5c, 5d, 7a, 7b, 8, 9a, 9b, 9d, 10a–c, 11, 13**, and **15**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO991032B